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1. INTRODUCTION

The dynamic instability problem of translating media covering band-saws, paper webs,
transmission belts, oil pipelines and exhaust mufflers has been of academic and
engineering interest. The major concern is the determination of boundaries separating
stability and instability. When the translating velocity or tension is constant, the dynamic
behavior of such translating media is governed by a partial differential equation with
constant coefficients. However, the coefficients of the partial differential equation will
become time-dependent periodic when the translating velocity or tension P has a time-
dependent periodic component superposed on a constant, P ¼ P0 þ aP1ðtÞ; where P1ðtÞ is
a periodic function of time t with its period T0; and P0 and a are constants. For the partial
differential equations with time-dependent periodic coefficients, parametric instability has
to be considered.

The parametric instability of axially moving media with a periodic tension force has
been investigated by some researchers. Wickert and Mote [1] reviewed the dynamic
behavior of moving materials with a focus on moving strings and beams. Paidoussis and Li
[2] presented a survey on the dynamic instability of pipes conveying fluid. To [3]
investigated the acoustic pulsation of mufflers and pipelines with pulsating flow velocity.
Mote [4] evaluated the parametric instability boundary of a translating string using
numerical methods that involve the replacement of the spatial derivatives with finite
differences and integration of the set of Mathieu equations. Wu and Mote [5] also
investigated the parametric excitation of an axially moving band under periodic loading.
Mockensturm et al. [6] addressed the issue of stability and limit cycles of moving strings
parametrically excited. Pakdemirli and Ulsoy [7] investigated the stability of an axially
accelerating string. Recently, Parker and Lin [8] studied the parametric instability of
axially moving media subjected to multi-frequency tension and speed fluctuations.

The available methods for the evaluation of parametric instability boundaries of such
problems are the perturbation method (also called the small parameter methods), for
example, reference [9]; and the Galerkin method. The perturbation method is
comparatively simple in its concept; but it can only determine a portion of stability
boundaries. The Galerkin method can reduce the partial differential equation with
periodic coefficients into a set of ordinary differential equations with periodic coefficients;
then this set of ordinary differential equations with periodic coefficients can be either cast
into an eigenvalue problem using Bolotin’s method [10] or solved using the perturbation
methods. The methods mentioned above sometimes give poor evaluation accuracy. In
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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addition, the Galerkin method requires that trial functions be comparison functions,
satisfying both essential boundary conditions and natural boundary conditions. Such
requirements may bring about difficulties in choosing trial functions if the system’s layout
involves free ends, in-span supports or connection to other spring–mass systems. In past
practice, the eigensolutions of the corresponding stationary system were often used as a set
of trial functions of the Galerkin method. But, the eigensolutions of the stationary system
may violate the natural boundary conditions of the axially translating system and thus the
evaluation accuracy is in doubt. For two-dimensional problems like wide paper webs and
wide band saws, it would be very challenging to implement the Galerkin method because
of the difficulty in choosing proper admissible functions.

In this paper, a variational method is used for the formulation of the dynamic instability
assessment of axially translating media; and the parametric instability problem is reduced
into a stationary value problem in the form of a classical Rayleigh quotient. As a result,
the trial functions do not have to satisfy the natural boundary conditions. Moreover, the
approximation error of the functional, resulting from series truncation, is of the second
order if the error of the trial functions is of the first order.

In the last part of the paper, the example of an axially translating string is presented to
demonstrate the variational principle proposed in this paper. The effect of gyroscopic
force on the stability region boundary is also examined using this variational principle
with the stability region boundary obtained by Mote [4] as a cross-check on the predictions
by the present method. The aim of this study is the establishment of a basis for the
numerical solution of such problems using Rayleigh–Ritz methods, and in particular,
finite element methods.

2. THE VARIATIONAL FORMULATION FOR AN AXIALLY TRANSLATING STRING
AND BEAM

The linerized equation of transverse motion for the axially moving string with a periodic
tension component is (see reference [4])

r
@2w

@t2
þ 2Vr

@2w

@x@t
þ rV2 @

2w

@x2
� ðP0 þ aP1ðtÞÞ

@2w

@x2
¼ 0 ð1Þ

with its essential boundary conditions given by

wð0; tÞ ¼ wðl; tÞ ¼ 0: ð2Þ

where V is the axial transport velocity; wðx; tÞis the transverse displacement; t is the time; x

is the length co-ordinate; P0 is the mean value of the tension in one period; aP1ðtÞ is the
periodic time-varying component of the tension with T0 as its period; and a is the scalar
variable.

The parametric instability problem can be restated in this way: to find the value of the
scalar variable a so that there exists a non-trivial periodic solution wðx; tÞ
(ðwðx; tÞ ¼ wðx; t þ TÞÞ that satisfies equation (1) and the essential boundary condition
(2). Note that the period T of wðx; tÞ can be integer multiples of the period T0 of P1ðtÞ: For
the principal parametric instability, T is twice as large as T0; i.e., T ¼ 2T0: It can be seen
from this statement that the dynamic instability problem is a typical eigenvalue problem.
Therefore, we attempt to reformulate this parametric instability problem using a concept
similar to that of the classical Rayleigh quotient. To do so, one has to find the associated
functional, the quotient, governing the transverse motion of the axially translating string.
Following the treatment of the dynamic instability of a column by Hu [11, 12], such
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functional can be established as
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; ð3Þ
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Equations (3, 3a, 3b) indicate that a is a functional of wðx; tÞ: In can be proved that a
achieves its stationary value when wðx; tÞ is the true solution. That is to say, the true
solution wðx; tÞ; that satisfies equation (1), boundary condition equation (2) and the
periodicity condition ðwðx; tÞ ¼ wðx; t þ TÞÞ; will provide a stationary value for the
functional, defined by equation (3),

da ¼ 0; ð4Þ
here dð � Þ denotes the operation of taking ð � Þ first order variation with respect to wðx; tÞ:

Following the above procedure one can establish the corresponding variational
principle for an axially translating beam.

The linearized equation of the transverse motion for an axially moving Euler–Bernoulli
beam with a periodic tension component is
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with its boundary conditions given by

w ¼ 0 and
@w

@x
¼ 0 at fixed ends; ð5aÞ

w ¼ 0; and EJ
@2w

@x2
¼ 0 at simply supported ends; ð5bÞ

where EJ is the flexural rigidity of the beam, and the definitions of the other symbols in
equations (5, 5a, 5b) are the same as those of the string mentioned above.

The functional associated with equations (5, 5a, 5b) can be written as

a ¼
P1 �

R T

0

R l

0EJð@2w=@x2Þ2 dx dt

P2
; ð6Þ

where P1 and P2 share the same expressions as in equations (3a, 3b). In can be proven
that the stationary value problem of the functional defined in equation (6) is equivalent to
the original problem.

3. GENERALIZATION

Examining the terms in equations (3, 3a, 3b), one can see that every term has its own
physical meaning. Each term represents the average generalized energy in one period of
time T ; either average generalized potential energy or average generalized kinetic energy.
The entire equation means the conservation of average generalized energy in one period of
time T ; i.e., the average generalized kinetic energy ðKEce þ KEw þ KEcoÞ is equal to the
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average generalized potential energy ðPE0 þ PEb þ aPEpÞ;
ðKEce þ KEw þ KEcoÞ � ðPE0 þ PEb þ aPEpÞ ¼ 0; ð7Þ

where
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Based on the statement of the physical meanings given in equation (7) one can conceive the
functional

a ¼ ðKEce þ KEw þ KEcoÞ � ðPE0 þ PEbÞ
PEp

: ð8Þ

It is not difficult to verify that the original equation of motion plus the natural boundary
conditions can be derived by invoking the stationarity of the functional with respect to
wðx; tÞ; i.e., da ¼ 0; for any particular system. Let us illustrate this using the following two
examples.

3.1. EXAMPLE 1

Consider the same translating beam addressed above except that a spring with stiffness
coefficient k is connected to the beam at x ¼ b; as shown in Figure 1. In addition to all of
the energy terms given in equations (3, 3a, 3b), there is one more potential energy term
resulting from the spring deformation, it is
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T

Z T

0

kw2ðb; tÞ dt: ð9Þ

Thus, the associated functional is
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and it can be shown that Euler equations of equation (10) are exactly the same as its
differential equation plus the natural boundary conditions.

3.2. EXAMPLE 2

Another example is the same beam as discussed above but the spring is replaced with an
in-span support, a simply support, at x ¼ b; as shown in Figure 2. Combining the
generalized variational principle illustrated in Liu et al. [13] and the variational principle



Figure 1. Translating beam under periodic tension with a spring support.

Figure 2. Translating beam under periodic tension with an in-span simple support.
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given in equation (7), one can conceive the functional associated with this travelling beam
with an in-span support as
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where l is a Lagrange multiplier as an independent argument variable. Invoking the
stationarity of this functional a given in equation (11) with respect to both wðx; tÞand l;
one can derive the equation of motion plus the equation wðb; tÞ ¼ 0 as well as the natural
boundary conditions.

Note that the functional given by equation (8) may not be the only functional available
to serve such purpose. Other conserved functionals, such as those functionals addressed by
Renshaw et al. [14], may also be used to develop the variational formulation.

4. THE RAYLEIGH–RITZ METHOD

Using the variational principle established above, one can use either Rayleigh–Ritz
methods or finite element methods to transform the variational equation into an algebraic
eigenvalue problem. Next, we will illustrate this using the Rayleigh–Ritz method.

In the Rayleigh–Ritz method, wðx; tÞ is expressed as

wðx; tÞ ¼
XN

i¼1

aijiðx; tÞ ¼ FTb ð12Þ
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where ai is the coefficient to be determined and jiðx; tÞ is the chosen trial function
satisfying all of the essential boundary conditions and the periodicity condition as well.
Denote FT ¼ ½j1;j1; :::; jN � and bT ¼ ½a1; a1; :::; aN �: It should be noted that the
Rayleigh–Ritz method does not require jiðx; tÞ to satisfy the natural boundary conditions.

Introduction of equation (12) into the variational expression, for example, equation (6),
yields

a ¼ bTðMce þ Mw þ McoÞb� bTðK0 þ KbÞ�b
bTKpb

; ð13Þ

where Mce; Mw; Mco; Ko; Kb and Kp are N 	 N order matrices,
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Taking the first order variation of a with respect to b and making the first order variation
vanish, da ¼ 0; one obtains the algebraic eigenvalue problem

½ðMce þ Mw þ McoÞ � ðK0 þ KbÞ�b ¼ aKpb: ð14Þ

Now, we have transformed the parametric instability problem into a standard algebraic
eigenvalue problem, which can be easily solved using conventional methods.

It should be noted that the symmetry of the matrices Mce;Mw;K0;Kb and Kp are ensured
except Mco; which reflects the effect of the gyroscopic force.

5. AN ILLUSTRATING EXAMPLE

For the purpose of illustrating the variational principle proposed in this paper, let us
evaluate the parametric instability boundary of the translating string with a tension
variation superposed on a mean tension. The parametric instability boundary of such a
moving string was evaluated by Mote [4], where the parametric instability boundary was
obtained using the numerical methods involving the numerical solution of a set of coupled
Mathieu equations obtained by replacing the spatial derivatives with equivalent difference
expression. The comparison between the instability boundary obtained by the present
method and the one from Mote [4] will be made as a cross-check. In addition, we will use
the present method to examine the effect of the gyroscopic forces on the instability
boundary.

The non-dimensional linearized equation of transverse motion of the axially translating
string is (see reference [4])

vtt þ 2cvxt þ ðc � 1Þvxx � aðcos 2pytÞvxx ¼ 0 ð15Þ

with its essential boundary conditions given by

vð0; tÞ ¼ vð1; tÞ ¼ 0; ð16Þ
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where v is the non-dimensional transverse displacement; c is the non-dimensional axial
transport velocity; a is the non-dimensional tension variation; x is the non-dimensional
length; t is the non-dimensional time; and y is the non-dimensional frequency of the
tension variation.

Based on the functional given by equations (3, 3a, 3b), one can obtain the functional
associated with this non-dimensional string as
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Now the instability boundary problem is transformed into the stationary value problem of
the functional a defined by equation (17). Here, we only address the application of the
classical Rayleigh–Ritz method to the solution of this stationary value problem. The key
to the success of the classical Rayleigh–Ritz method lies in the proper choice of trial
functions. The requirements of the trial functions are that (1) they satisfy the essential
boundary condition vð0; tÞ ¼ vð1; tÞ ¼ 0 and (2) they satisfy the periodicity condition
vðx; tÞ ¼ vðx; tþ 2=yÞ: As can be seen in equation (15) that the period of the tension
variation is 1=y; and thus the trial functions are required to have the period 2=y for the
principle parametric instability, i.e., T ¼ 2=y:

Regarding how to choose the trial functions, much attention has to be given to the
gyroscopic force term

R T

0

R 1

02cð@v=@xÞð@v=@tÞ dx dt in equation (17). When the translating
velocity c is quite small, for example, c40�2; this gyroscopic force term can be ignored and
thus the classical normal mode shapes exist; accordingly, it is reasonable to choose the
classical normal mode shapes as the trial functions. However, this gyroscopic force term
cannot be ignored when the translating speed c is not small, for example, c50�3: In this
case, no classical normal mode shapes exist (see reference [15]). Therefore, it will not lead
to an accurate instability boundary if all of the trial functions are in the classical mode
shapes.

5.1. CASE 1

First, let us assume that the gyroscopic force term in equation (17) is small enough to be
ignored. In this case, the solution vðx; tÞ can be approximated using the linear combination
of classical mode shapes,

vðx; tÞ ¼ sin pxða1cos pytþ a2cos 3pytþ a3cos 5pytÞ; ð18Þ

where a1; a2 and a3 are the coefficients to be determined. It is clear that vðx; tÞ satisfies the
essential boundary condition and the periodicity condition. Introduction of equation (18)
into the variational expression (17) with ignoring the gyroscopic force term,R T
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Invoking the stationarity of a with respect to ai (i ¼ 1; 2; 3), i.e.,

@a
@ai

¼ 0; ði ¼ 1; 2; 3Þ:
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Figure 3. Principal region of dynamic instability for transport velocities (a) c ¼ 0�2; (b) c ¼ 0�4; (c) c ¼ 0�6:
Solid lines denote the results presented by Mote [4]; dash lines denote results when the effect of gyroscopic force
term is completely ignored and thus the trial functions given by equation (18); dot lines denote the results with the
effect of gyroscopic force term considered and the trial functions given by equation (21).
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one gets the eigenvalue problem
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For the given set of c and y values, the eigenvalues a and the associated eigenvectors
½a1; a2; a2� can be evaluated by solving this eigenvalue problem; and the instability
boundary is plotted in Figures 3(a–c) using dash and lines. For the purpose of comparison,
the instability boundary evaluated by Mote [4] is also plotted using solid lines in
Figures 3(a–c).

It can be seen from Figures 3(a–c) that the instability boundary given by the present
method is quite close to the one given by Mote [4] when the translating velocity c is smaller
than 0�2. The larger the translating velocity c; the more significant the difference between
the instability boundary given by the present method and the one in reference [4]. This
difference is due to the fact that the gyroscopic force term,

R T

0

R 1

02cð@v=@xÞð@v=@tÞ dx dt;
has been taken out in the functional defined in equation (17). In the next part, we are going
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to take account of this gyroscopic term and its effect on the evaluation accuracy of the
instability boundary will be shown. Regarding the eigenvectors, i.e., instability mode
shape, it can be observed that a3 is much smaller than a1 and a2: This means that the first
two terms of trial functions alone can give satisfactory accuracy.

Note that the gyroscopic force term is equal to zero, i.e.,
R T

0

R 1

0
2cð@v=@xÞð@v=@tÞ dx dt ¼

0; if the trial functions have the classical mode shapes like those given in equation (18). In
other words, the gyroscopic force term will not bring any effect to the eigenvalues and the
eigenvectors if the classical mode shapes are the exclusive kind of trial functions.

5.2. CASE 2

As pointed in the book by Chen [15], no classical normal mode shape exists because of
the gyroscopic force term. Chen [15] argued that the motions associated with the
symmetric mode shapes will produce a gyroscopic force, which, in turn, will induce motion
in the anti-symmetric mode shapes. This means that trial functions must include, besides
the classical mode shapes, those trial functions which can take the effect of the gyroscopic
force into account. To handle this, Wickert and Mote [16] tried complex mode shapes.
With this point in mind, we choose the trial functions in the following form:

vðx; tÞ ¼ sinðpxÞða1cos pytþ a2cos 3pytÞ
þ a3xðx � 1Þsinðpxþ pytÞ þ a4xðx � 1Þsinðpx� pytÞ
þ a5xðx � 1Þsinðpxþ 3pytÞ þ a6xðx � 1Þsinðpx� 3pytÞ; ð21Þ

where sinðpxÞða1 cos pytþ a2 cos 3pytÞ has the form of classical normal mode shapes;
a3xðx � 1Þsinðpxþ pytÞ þ a4xðx � 1Þsinðpx� pytÞ is a couple of waves travelling in
opposite directions; a5xðx � 1Þsinðpxþ 3pytÞ þ a6xðx � 1Þsinðpx� 3pytÞ also represents
a couple of waves travelling in opposite directions but with different wave velocity; ai

(i ¼ 1; 2; 3; . . . ; 6) is the coefficient to be determined through invoking the stationarity of
the functional with respect to ai: The reason for choosing these two sets of waves as the
components of the trial functions is to try to reflect the effect of the gyroscopic force term
because the gyroscopic force has the tendency to move the mode shapes.

Through the introduction of equation (21) into equation (17), and by invoking the
stationarity of a with respect to ai (i ¼ 1; 2; 3; . . . ; 6), one can get the eigenvalue problem
with a as the eigenvalue and ½a1; a2; a3; a4; a5; a6� as the eigenvector.

For the given set of c and y values, the eigenvalues a and the associated eigenvectors
½a1; a2; a3; a4; a5; a6� are evaluated by solving this eigenvalue problem; and the instability
boundary is plotted in Figures 3(a–c) by dash-dot lines.

It can be seen from Figures 3(a–c) that the instability boundary, associated with this set
of trial functions, is very close to the one given by Mote [4] even when the translating
velocity c reaches 0�6. Note that the gyroscopic force term is not zero anymore,R T

0

R 1

02cð@v=@xÞð@v=@tÞ dx dt=0; for the trial functions given by equation (21). In other
words, the trial functions given by equation (21) indeed reflect the effect of the gyroscopic
force term. That is why the instability boundary evaluated by the trial functions defined by
equation (21) retains its better accuracy even when the translating velocity c is as large as
0�6. In contrast, the instability boundary obtained by the classical mode shapes given in
equation (18) is not accurate at all for the translating velocity c greater than 0�3. The
reason for this is that the classical mode shapes do not cover the effect of the gyroscopic
force term even though the gyroscopic force term is significant when the translating
velocity c becomes greater than 0�3.
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It is also quite interesting to see the trend of the eigenvectors with respect to the
translating velocity, c: In can be seen that a1 and a2 decrease but a3; a4; a5; and a6 increase
when the translating velocity, c; increases. Note that a1; and a2 are the coefficients of the
classical mode shapes, sinðpxÞða1 cos pytþ a2 cos 3pytÞ; while a3; a4; a5; and a6 are the
coefficients of the waves, xðx � 1Þ½a3 sin pðxþ ytÞ þ a4 sin pðx� ytÞ þ a5 sin pðxþ
3ytÞa6 sin pðx� 3ytÞ�: This trend demonstrates that the effect of the gyroscopic force
term increases with the increase of translating velocity, c:

6. CONCLUDING REMARKS

This paper proposed the variational principle for parametric instability analysis of
axially translating media. The functional associated with the variational principle is similar
to the classical Rayleigh quotient in that it represents the conservation of the average
generalized kinetic energy and the average generalized potential energy. After realizing the
fact that the average generalized energy is conservative, it would not be difficult to derive
the variational principle given in this paper via application of Hamilton’s Principle. Since
it is formulated as a stationary value problem, the error of eigenvalues is in the second
order when the error of the Rayleigh–Ritz trial functions is in the first order. In addition,
the current method does not require the trial functions to satisfy the natural boundary
conditions and as a result, it brings about simplicity in choosing trial functions compared
with the Galerkin methods. Moreover, the method proposed here can generate the
eigenfunctions associated with the eigenvalues. These eigenfunctions provide very useful
information about the spatial–temporal shape of the translating media when it is in the
critical state. Finally, the variational principle proposed here offers the foundation for
approximate solution of such problems using finite element methods. For two-dimensional
structures like wide paper webs and wide saw blades, the finite element methods would be
promising with the variational principle proposed in the paper as its theoretical basis. The
numerical example shows that two or three terms of trial functions will give a very
accurate instability boundary using the classical mode shapes as the trial functions when
the translating velocity c40�2: When c50�2; the effect of the gyroscopic force term is
significant and thus the set of trial functions must include non-classical mode shapes. The
combination of the classical mode shapes and the two sets of waves do lead to a very
accurate instability boundary even when c ¼ 0�6:
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